A complementary triangle inequality in Hilbert and Banach spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reverses of the Triangle Inequality in Banach Spaces

Recent reverses for the discrete generalised triangle inequality and its continuous version for vector-valued integrals in Banach spaces are surveyed. New results are also obtained. Particular instances of interest in Hilbert spaces and for complex numbers and functions are pointed out as well.

متن کامل

Banach Spaces and Hilbert Spaces

A sequence {vj} is said to be Cauchy if for each > 0, there exists a natural number N such that ‖vj−vk‖ < for all j, k ≥ N . Every convergent sequence is Cauchy, but there are many examples of normed linear spaces V for which there exists non-convergent Cauchy sequences. One such example is the set of rational numbers Q. The sequence (1.4, 1.41, 1.414, . . . ) converges to √ 2 which is not a ra...

متن کامل

Some Properties of Reproducing Kernel Banach and Hilbert Spaces

This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...

متن کامل

Interpolation between Hilbert , Banach and Operator spaces

Motivated by a question of Vincent Lafforgue, we study the Banach spaces X satisfying the following property: there is a function ε → ∆ X (ε) tending to zero with ε > 0 such that every operator T : L 2 → L 2 with T ≤ ε that is simultaneously contractive (i.e. of norm ≤ 1) on L 1 and on L ∞ must be of norm ≤ ∆ X (ε) on L 2 (X). We show that ∆ X (ε) ∈ O(ε α) for some α > 0 iff X is isomorphic to ...

متن کامل

Womp 2004, Banach and Hilbert Spaces

Let X be a NLS. Consider the set of all bounded linear functionals on X, and associate the norm defined above (as an exercise verify that it is indeed a norm). The resulting space, denoted X∗, is called the dual of X. It is another exercise to verify that X∗ is a Banach space (even if X isn’t). We can also consider the double dual X∗∗. It is easy to show that X is naturally imbedded in X∗∗ by t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1966

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1966-0188748-8